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introduction

Fuzzy mathematical morphology, within the framework of
Soft Computing, has proved to be a powerful tool to
handle imprecision in images. This theory provides
competitive results positioning it in the state-of-the-art
of many applications.

This theory relies on the use of fuzzy morphological
operators defined using fuzzy conjunctions and fuzzy
implication functions.
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introduction
conjunctions and fuzzy implication functions

Definition
An increasing binary operator C : [0, 1]2 → [0, 1] is a fuzzy
conjunction whenever it is increasing in both variables
and it satisfies C(0, 1) = C(1, 0) = 0 and C(1, 1) = 1.

Definition
A binary operator I : [0, 1]2 → [0, 1] is a fuzzy implication
function if it is decreasing in the first variable, increasing
in the second one and it holds that I(0, 0) = I(1, 1) = 1
and I(1, 0) = 0.
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introduction
basic fuzzy morphological operators

Definition
Let C be a fuzzy conjunction and I be a fuzzy implication
function. The fuzzy dilation DC(A,B) and the fuzzy
erosion EI(A,B) of a grey-scale image A and a grey-scale
structuring element B are defined as:

DC(A,B)(y) = sup
x∈dA∩Ty(dB)

C(B(x− y),A(x)),

EI(A,B)(y) = inf
x∈dA∩Ty(dB)

I(B(x− y),A(x)),

where dA and dB denote the definition domains of A and
B and Ty(dB) is the translation of the fuzzy set dB by
vector y ∈ R2 given by Ty(dB)(z) = dB(z− y).
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introduction

Figure: From left to right, original image, fuzzy erosion and fuzzy dilation.
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introduction

From these basic operators, more complex operators can
be defined. Of paramount importance for this
presentation are:

∙ The Fuzzy Morphological Hit-or-Miss.
∙ The Fuzzy Top-Hat.
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introduction
goals

In this presentation, the main goals are:

1. To provide a general overview of the recent research
on the Fuzzy Top-Hat and the Fuzzy Morphological
Hit-or-Miss.

2. To present their definitions and theoretical
properties.

3. To present their applications in several fields such
as:

∙ Curvilinear object detection.
∙ Eye fundus vessels segmentation.
∙ Hair skin removal in dermoscopic imagery
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Fuzzy Morphological Hit-or-Miss
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fuzzy morphological hit-or-miss
from binary hom to fmhom

The HMT of a binary image uses two structuring
elements:

∙ BFG: the foreground structuring element.
∙ BBG: the background structuring element.
∙ BFG ∩ BBG = ∅
∙ They must have the same origin.
∙ B = (BFG,BBG).

Given B, we want to extract all pixels that are surrounded
by areas where both SE match the predefined patterns,
i.e., those where BFG fits A while BBG fits Ac.

A⊛B = {x : (BFG)x ⊆ A, (BBG)x ⊆ Ac} = (A⊖BFG)∩(Ac⊖BBG).
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fuzzy morphological hit-or-miss
from binary hom to fmhom

Modelling the intersection by a fuzzy conjunction, the
inclusion by a fuzzy implication function and the complement
by a fuzzy negation, we can define the so-called Fuzzy
Hit-or-Miss Transform.

Definition
Let N be a strong fuzzy negation, I a fuzzy implication function
and C a fuzzy conjunction. The fuzzy Hit-or-Miss transform
(FHMT) of the grey-level fuzzy image A with respect to the
grey-scale structuring element B = (B1,B2) is defined by

FHMTC,I,N(A,B)(y) = C (EI(A,B1)(y), EI(N(A),B2)(y)) ,

where N(A)(x) = N(A(x)) for all x ∈ dA and
C(A,B)(x) = C(A(x),B(x)), for all x ∈ dA ∩ dB.
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fuzzy morphological hit-or-miss
properties - generalization

Theorem
Let A be a binary image and B = (B1,B2) be a binary
structuring element. Then the FHMT operator coincides
with the classical binary Hit-or-Miss, i.e.,
FHMTC,I,N(A,B) = A⊛ B.

Moreover, it is invariant for translations and monotone in
the sense of the next result.
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fuzzy morphological hit-or-miss
properties - monotonicity

Proposition
Let T be a t-norm, I a fuzzy implication function satisfying
I(x, y) = 1 iff x ≤ y (OP), N a fuzzy negation, A a grey-scale
image and B∗

1 = (B1,N(B1)) and B∗
2 = (B2,N(B2)) two

grey-scale structuring elements. Then it holds that:
i) FHMTT,I,N(A,B∗

2)(y) ≤ FHMTT,I,N(A,B∗
1 )(y) for all

x ∈ dTy(B1) ∩ dTy(B2) and y ∈ Rn whenever
A(x) ≤ B1(x− y) ≤ B2(x− y).

ii) FHMTT,I,N(A,B∗
2)(y) ≤ FHMTT,I,N(A,B∗

1 )(y) for all
x ∈ dTy(B1) ∩ dTy(B2) and y ∈ Rn whenever
B2(x− y) ≤ B1(x− y) ≤ A(x).

12



fuzzy morphological hit-or-miss
properties - value

It is able to detect all the parts of the image which are
equivalent to the structuring element with value 1.

Proposition
Let A be a grey-scale image, B = (B1,N(B1)) a grey-scale
structuring element, T a t-norm, I a fuzzy implication
function satisfying (OP) and y ∈ Rn. Then B1 is a part of A
at the point y iff FHMTT,I,N(A,B)(y) = 1.
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fuzzy morphological hit-or-miss
properties - value

∙ Binary HMT: Finds fully coincidence or not →
possible values {0, 1}.

∙ Fuzzy Morphological HMT: Given x ∈ Rn, we can
understand

FHMTB(A)(x) = C(u, v),

as a “degree of similarity” related with the value of
the aggregation operator C at the point (u, v), where

∙ u shows how B1 is included in the grey-level image A,
∙ v shows how B2 included in N(A).

So, if the value is closer to 1, it is more certain that the
shape of B1 is contained in the image A.
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applications
a toy example

Figure: Fuzzy morphological hit-or-miss transform detection of E’s.
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applications
a curvilinear object detector

We have recently proposed a curvilinear object detector
based on the fuzzy morphological hit-or-miss transform
defined as:

D1(A) = Agg2
s∈{s1,...,sn}

{
Agg1

α∈{α1,...,αm}

{
FHMTC,I,N(A,B(s,α)

1 ,B(s,α)
2 )

}}
,

where s1, . . . , sn and α1, . . . , αm denote the sizes and
orientations of the structuring elements B(s,α)

1 and B(s,α)
2 .
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applications
a curvilinear object detector

Figure: Sample of the structuring element pairs of the hit-or-miss transform, with
s1 = 5 and α1 = 30◦ (left) and s2 = 13 and α2 = 120◦ (right).
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applications
a curvilinear object detector

Figure: Workflow of the hit-or-miss curvilinear object detector applied at scales
{s1, . . . , sn} and orientations {α1, . . . , αm}.
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applications
a curvilinear object detector

Figure: Results obtained with 6 orientations and different sizes {3, 5}, {5, 9}, {9, 13}
and {3, 5, 9, 13}.
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applications
a curvilinear object detector

Figure: Results obtained with structuring elements of sizes s ∈ {5, 9, 13} and different
number of orientations {2, 4, 6, 8}.
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Top Hat transform
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top hat – definition

Definition

Let C be a conjunction, I a fuzzy implication function, and
A, B grayscale images. Then, the Opening, OC,I(A,B); and
the Closing, CC,I(A,B); are:

OC,I(A,B) = DC(EI(A,B),B),
CC,I(A,B) = EI(DC(A,B),B),

where B(x) = B(−x).
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top hat – definition

Definition

Let C be a conjunction, I a fuzzy implication function, and
A, B grayscale images. Then, the White Top-Hat transform,
WTHC,I(A,B); and the Black Top-Hat transform, BTHC,I(A,B);
are:

WTHC,I(A,B) = A−OC,I(A,B),
BTHC,I(A,B) = CC,I(A,B)− A.
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top hat – behaviour

Original image
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top hat – behaviour

Erosion Original image Dilation
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top hat – behaviour

Erosion Original image Dilation

Opening Closing
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top hat – behaviour

Opening Original image Closing
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top hat – behaviour

Opening Original image Closing

White top-hat Black top-hat
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top hat – behaviour

Opening Original image Closing

White top-hat Avrg top-hats Black top-hat
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top hat – curvilinear detector

(a) Green Channel
from Eye-Fundus

(b) CLAHE

(c) Top Hat (d) Hysteresis
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top hat – curvilinear detector

(a) σ2 = 1.0. (b) σ2 = 4.2.

(c) σ2 = 75.0.
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Color Top Hat transform
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foreground vs background
What is the object?

26



foreground vs background
What is the object?

26



foreground vs background
What is the object?
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foreground vs background – alternatives

DC(A,B)(y) = Aggregation
x

{
f(A(x),B(x− y)}

}
. (1)

∙ Process each channel independently.

∙ Define a certain order among colors (and select
maximum).

∙ Find a certain order among colors (and select
maximum).

∙ Consider an averaging function for colors.
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ciel*a*b* color space
∙ 3 channels

∙ L: luminance
∙ a* i b*: chromatic information.

∙ Perceptually uniform.

Figure: CIELab gamut
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fuzzy color morphology – definition

Idea: computing “grayscale morphology” on first channel,
and drag the values from other channels.

DC(A,B)(y) =
{(

C
(
B(x− y),A1(x)

)
, A2(x), . . . , Am(x)

)
st.

x ∈ dA ∩ Ty(dB) and C
(
B(x− y),A1(x)

)
is maximum

}
.

(2)

EI(A,B)(y) =
{(

I
(
B(x− y),A1(x)

)
, A2(x), . . . , Am(x)

)
st.

x ∈ dA ∩ Ty(dB) and I
(
B(x− y),A1(x)

)
is minimum

}
.

(3)
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fuzzy color morphology – behaviour

Figure: Erosion (left), and dilation (right) of the Balloons image (center), with the
minimum t-norm, the Gödel implication and a 15× 15-pixel (up) or a 31× 31-pixel
(down) Gaussian-shaped structuring element.
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color top hat – definition

Definition

Let C be a conjunction, I a fuzzy implication function, and
A, B grayscale images. Then, the

Color

White Top-Hat
transform, WTH

≡

C,I(A,B); and the

Color

Black Top-Hat
transform, BTH

≡

C,I(A,B); are:

WTH

≡

C,I(A,B) = A−O

≡

C,I(A,B),
BTH

≡

C,I(A,B) = C

≡

C,I(A,B)− A.

31



color top hat – definition

Definition

Let C be a conjunction, I a fuzzy implication function, and
A, B grayscale images. Then, the Color White Top-Hat
transform, WTH≡

C,I(A,B); and the Color Black Top-Hat
transform, BTH≡

C,I(A,B); are:

WTH≡
C,I(A,B) = A−O≡

C,I(A,B),
BTH≡

C,I(A,B) = C≡
C,I(A,B)− A.

31



color top hat – definition

Definition

Let C be a conjunction, I a fuzzy implication function, and
A, B grayscale images. Then, the Color White Top-Hat
transform, WTH≡

C,I(A,B); and the Color Black Top-Hat
transform, BTH≡

C,I(A,B); are:

WTH≡
C,I(A,B) = d(A,O≡

C,I(A,B)),
BTH≡

C,I(A,B) = d(A, C≡
C,I(A,B)),

where d is a map from pairs of colors to [0, 1].
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color top hat – behaviour

Original image
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Erosion Original image Dilation
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color top hat – behaviour

Erosion Original image Dilation

Opening Closing
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color top hat – behaviour
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color top hat – behaviour
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White top-hat Black top-hat
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color top hat – behaviour

Opening Original image Closing

White top-hat Avrg top-hats Black top-hat
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color top hat – curvilinear detector

(a)Original (b) Preprocessing (c) Aggregated
top-hat

(d)Mask to inpaint (e) Final result
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color top hat – curvilinear detector
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Conclusions

34



conclusions

∙ Theoretical background of mathematical
morphology.

∙ Development of color/grayscale curvilinear
detectors.

∙ Competitive results in real applications.
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Thank you
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