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Abstract. In the last decades, operations defined on finite chains, usu-
ally called discrete operations, have experienced a peak of interest due
to their applications in many fields. One of such operations are discrete
t-subnorms which are a generalization of discrete t-norms, which have a
paramount importance in applications dealing with linguistic labels. In
this paper, the natural associated negations of discrete t-subnorms are
deeply studied. From this study, several insights into the structure of
these operators are presented and some properties are studied. Specifi-
cally, the discrete negations which can be the natural associated nega-
tion of a discrete t-subnorm are characterized in some particular cases.
Throughout the paper the concepts of weak and symmetrical negation,
which turn out to be equivalent in the discrete case, play a key role.
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1 Introduction

In many practical situations in which the range of computations and reasoning
must be reduced to a finite set of possible values, often qualitative, the fuzzy
linguistic approach is the adequate framework to model the information. This
is because in this case, the qualitative terms used by experts are usually repre-
sented via linguistic variables instead of numerical values. Whenever this applies,
linguistic variables are often interpreted to take values on totally ordered scales
such as:

L = {Extremely Bad,Very Bad,Bad,Fair,Good,Very Good,Extremely Good},

which can be all represented by the finite chain Ln = {0, 1, . . . , n}. Consequently,
many researchers have focused their efforts to study operations defined on Ln,
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or discrete operations for short (see [7, 8, 11, 18] and specially [23] as the pioneer
papers on this topic).

Among the whole set of discrete operations, discrete aggregation functions
stand out due to the necessity to merge some data into a representative output.
From decision making and subjective evaluations to image analysis and pattern
recognition, the number of applications of aggregation functions is growing con-
stantly as the number of different and complementary monographs that have
been published in last years corroborate (see [2, 3, 12]). In most cases, the study
on aggregation functions is performed assuming the smoothness property, which
is usually considered as the counterpart of continuity for this kind of operations,
or the equivalent 1-Lipschitz property. In this topic, many families of discrete
aggregation functions have already been studied or even characterized. For in-
stance, smooth t-norms and t-conorms were characterized in [24] (see also [23]),
smooth t-subnorms in [20], weighted ordinal means in [16], uninorms in Umin

and Umax and nullnorms in [18], discrete idempotent uninorms in [6], uninorms
and nullnorms without the commutative property in [19] and [8], respectively,
copulas in [22] and quasi-copulas in [1].

In addition to the proper division on families, discrete aggregation functions
can be divided depending on their relationship with the minimum and the max-
imum leading to four classes: conjunctive when they lie under the minimum,
disjunctive when they lie over the maximum, averaging or compensatory when
they lie between the minimum and the maximum, and mixed otherwise. In this
paper, we will focus on the class of conjunctive discrete aggregation functions and
in particular, on the family of discrete t-subnorms. These operations generalize
the well-known family of discrete t-norms (see [7, 15]) and can be viewed as a
particular case of an order topological semigroup [5]. T-subnorms on [0, 1] play a
key role in the ordinal sum based construction of left-continuous t-norms and in
other construction methods (see [14]). Other studies on these operations related
to their representation through additive and multiplicative generators [9, 21, 25]
and the fulfilment of some properties such as cancellativity [17] or lipschitzianity
[10] have also supported the importance of t-subnorms.

Recently, one line of research on t-subnorms on [0, 1] has been devoted to
their associated natural negation. The concept of the associated natural nega-
tion was already studied in [4] for left-continuous t-norms, but it is in [13] where
a complete study of t-subnorms with strong associated natural negation was
performed. There, it was proved that such t-subnorms are in fact t-norms and
the relationships between different algebraic and analytic properties such as
Archimedeanness, conditional cancellativity, left-continuity and nilpotent ele-
ments were studied. Thus, within this line of research, in this paper we want to
perform a similar study for discrete t-subnorms. The natural associated nega-
tions of these discrete operations will be deeply studied and several insights into
the structure of these operators will be presented.

The paper is organized as follows. Section 2 is devoted to some preliminaries
on discrete operations, especially discrete t-subnorms and discrete t-norms, in
order to make the paper as self-contained as possible. Section 3 deals with the



study of weak negations and symmetrical negations, two subfamilies of discrete
negations which are proved to be equivalent in this context. In Section 4, the
concept of 0-function of a discrete t-subnorm is introduced. From this concept,
the cases when this 0-function becomes a discrete negation are fully determined.
Moreover, among other important properties, it is proved that weak negations
are the only discrete negations which are the natural associated negations of a
discrete t-norm. Finally, the paper ends with Section 5 devoted to some conclu-
sions and future work.

2 Preliminaries

We will suppose the reader to be familiar with the basic theory of aggregation
functions, fuzzy negations, t-norms (see [15]) and also with discrete t-norms,
that is, t-norms defined on a finite chain (see [24]). We only recall the definitions
and facts that will be used in the paper.

It is clear (see [24]) that for the study of binary aggregation functions all
finite chains with the same number of elements are equivalent. Thus, we will use
the most simple one with n+ 1 elements:

Ln = {0, 1, 2, . . . , n}

and, for all a, b ∈ Ln with a ≤ b, we will use also the notation [a, b] to denote
the finite subchain given by [a, b] = {x ∈ Ln | a ≤ x ≤ b}.

Definition 1 ([24]).

– A function f : Ln → Ln is said to be smooth if it satisfies | f(x)−f(x−1) |
≤ 1 for all x ∈ Ln with x ≥ 1.

– A binary operation F on Ln is said to be smooth when each one of its vertical
and horizontal sections are smooth.

The importance of the smoothness condition lies in the fact that it is generally
used as a discrete counterpart of continuity on [0,1], because it is equivalent to
the divisibility property (for a t-norm T , x ≤ y if and only if there is z ∈ Ln
such that T (y, z) = x), see again [24].

Proposition 1 ([24]). The only smooth (equivalently strong or strictly decreas-
ing) negation on Ln is the classical negation given by

N(x) = n− x for all x ∈ Ln.

Proposition 2 ([24]). Let 0 = a0 < a1 < . . . < am−1 < am = n be m + 1
elements in Ln and let Ti be a t-norm on the chain [ai−1, ai] for all i = 1, . . . ,m.
Then the binary operation on Ln given by

T (x, y) =

{
Ti(x, y) if there is an i such that ai−1 ≤ x, y ≤ ai,
min{x, y} otherwise,

is always a t-norm on Ln usually called the ordinal sum of t-norms T1, . . . , Tm.



Proposition 3 ([24]). There exists one and only one Archimedean smooth t-
norm on Ln which is given by

T (x, y) = max{0, x+ y − n} (1)

and it is usually known as the  Lukasiewicz t-norm.

Moreover, all smooth t-norms are characterized as ordinal sums of  Lukasiewicz
t-norms as follows.

Proposition 4 ([24]). A t-norm T on Ln is smooth if and only if there exists
a natural number m with 1 ≤ m ≤ n and a subset J of Ln,

J = {0 = a0 < a1 < . . . < am−1 < am = n}

such that T is given by

T (x, y) =

{
max{ak, x+ y − ak+1} if there is ak ∈ J with ak ≤ x, y ≤ ak+1,

min{x, y} otherwise.

A more general concept than t-norm is the one of t-subnorm.

Definition 2. Let T : L2
n → Ln be a binary operation on Ln. Then T is said

to be a t-subnorm when T is associative, commutative, non-decreasing in each
variable and such that T (x, y) ≤ min{x, y} for all x, y ∈ Ln.

Obviously, any t-norm on Ln is also a t-subnorm but not vice versa. For
instance, the weakest t-subnorm on Ln is the zero t-subnorm (T (x, y) = 0 for
all x, y ∈ Ln) which clearly is not a t-norm.

3 Some properties on discrete negations

Since the only smooth negation on Ln is the classical one, one can search for
alternative possibilities other than the classical negation N(x) = n − x. In the
non-smooth case we can find many other possibilities for discrete negations as
follows. The following definitions have been adapted from similar ones in [4] and
[6].

Definition 3. Let N : Ln → Ln be a discrete negation.

– N is said to be a weak negation when x ≤ N2(x) for all x ∈ Ln.
– N is said to be symmetrical when the set

FN = {(n, 0)} ∪ {(x, y) ∈ L2
n | N(x+ 1) ≤ y ≤ N(x)}

is symmetrical, that is, (x, y) ∈ FN if and only if (y, x) ∈ FN .

In the case of the interval [0, 1], weak and symmetrical negations do not
coincide in general and they coincide only when the negation N is left-continuous
(see [4]). The following example illustrates this fact.



Example 1. Roughly speaking, symmetrical negations are those negations N
whose graph is symmetrical with respect to the identity function. Thus, to each
possible constant region of N it corresponds a discontinuity point and vice versa
(see again [4]). If we do not have left-continuity in these points the property
x ≤ N2(x) can fail. See for instance the negation given by

N(x) =


1 if x ≤ 0.25,

1.25− x if 0.25 < x < 1,

0 if x = 1.

It can be easily proved that this negation N is symmetrical, but clearly it is
not a weak negation because for all x such that 0 < x ≤ 0.25 we have N2(x) =
N(1) = 0 < x.

In the discrete case both concepts always coincide as it is shown in the next
proposition. The proof can be easily adapted to the discrete case from the one
of Lemma 2 in [6]. However we include it here for the sake of completeness.

Proposition 5. Let N : Ln → Ln be a discrete negation. The following items
are equivalent:

i) N is symmetrical.
ii) N is a weak negation.

iii) For all (x, y) ∈ L2
n it holds that:

y ≤ N(x) ⇐⇒ x ≤ N(y).

Proof. (i) =⇒ (ii). For all x ∈ Ln we have by definition that (x,N(x)) ∈ FN .
Since N is symmetrical it must be also (N(x), x) ∈ FN and this implies that
x ≤ N(N(x)). That is, N is a weak negation.

(ii) =⇒ (iii). Consider (x, y) ∈ L2
n such that x ≤ N(y), the decreasingness of

N implies that N(x) ≥ N(N(y)) ≥ y. Similarly, from y ≤ N(x) it follows that
x ≤ N(y).

(iii) =⇒ (i). We want to prove that FN is symmetrical. Consider (x, y) ∈ FN ,
then N(x+1) ≤ y ≤ N(x) and hence x ≤ N(y). On the other hand, if we suppose
that N(y + 1) > x, then

x+ 1 ≤ N(y + 1) =⇒ y + 1 ≤ N(x+ 1) =⇒ y < N(x+ 1) ,

which contradicts the fact that (x, y) ∈ FN . We conclude that N(y+ 1) ≤ x and
thus (y, x) ∈ FN , proving that FN is symmetrical. ut

There are many examples of discrete weak (or symmetrical) negations on Ln.
In the following example we present a parametric family of discrete negations
that goes from the drastic negation to the classical one.



Example 2. Let us consider some α ∈ Ln and consider the function Nα given by

Nα(x) =


n if x = 0,

α− x if 0 < x < α,

0 if x ≥ α.

Then clearly Nα is a weak negation for all α ∈ Ln. Moreover, when α = 0 we
obtain N0 the drastic negation, whereas when α = n we obtain the classical
negation Nn(x) = n− x.

4 Discrete t-subnorms and their associated negations

We want to discuss in this section the properties of the zero-region of a discrete
t-subnorm in a similar way that it was done for t-subnorms defined on [0, 1]. To
do this we begin with the following definition already considered in [13] for the
[0, 1]-case.

Definition 4. Given any discrete t-subnorm T : Ln × Ln → Ln, its associated
0-function is denoted by NT and it is given by

NT (x) = max{z ∈ Ln | T (x, z) = 0}.

Contrarily to what happens for t-norms, the associated 0-function of a t-
subnorm does not need to be a discrete negation because NT (n) = max{z ∈
Ln | T (n, z) = 0} could be different from 0 (when T is a proper t-subnorm n is
not the neutral element of T ). When NT is in fact a discrete negation we will
call it the natural associated negation of the t-subnorm T . Moreover, note that

1. When n = 1, the zero t-subnorm (with associated 0-function given by
N(x) = 1 for x ∈ {0, 1}, which is not a negation), and the minimum t-
norm (with the classical negation as natural associated negation) are the
only t-subnorms on L1 = {0, 1}.

2. When n = 2 there are exactly seven t-subnorms on L2 that can be easily
constructed, from which only two of them are t-norms. In any case, the only
possibilities for their associated 0-functions are:
– The constant function N(x) = 2 for all x ∈ L2 = {0, 1, 2}.

– N(x) =

{
2 if x ∈ {0, 1},
1 if x = 2.

– The classical one N(x) = 2− x.

– The drastic one N(x) =

{
2 if x = 0,

0 if x ∈ {1, 2}.
.

Clearly, only the last two cases are discrete negations.

In view of the above study, we will suppose n ≥ 3 from now on. In the general case
n ≥ 3 we find also examples of t-subnorms, different from the zero t-subnorm,
with associated 0-function that is not a negation as the following example shows.



Example 3. Let us consider α ∈ Ln and the function Tα : L2
n → Ln given by

Tα(x, y) = max{0, x+ y − n− α} for all x, y ∈ Ln.

Then Tα is always a smooth t-subnorm (see [20]) with Tα(n, n) = n − α. In
particular, Tα is a proper t-subnorm if and only if α > 0. Moreover, its associated
0-function is given by:

NTα(x) = max{z ∈ Ln | Tα(x, z) = 0} = max{z ∈ Ln | x+ z − n− α ≤ 0}.

That is,

NTα
(x) = min{n, n+ α− x} =

{
n if x ≤ α,
n+ α− x if x > α.

Thus, it is clear that NTα
is a discrete negation only when α = 0 in which case

Tα is in fact the  Lukasiewicz t-norm. For all other cases NTα
(n) = α > 0. This

function NTα
is depicted in Figure 1.
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Fig. 1: The associated 0-function NTα
of Example 3.

In the discrete case we have the following easy characterization of those t-
subnorms for which their NT is a negation.

Lemma 1. Let T : L2
n → Ln be a discrete t-subnorm. The associated 0-function

of T is a discrete negation if and only if T (n, 1) = 1.

Proof. If NT is a discrete negation then NT (n) = max{z ∈ Ln | T (x, n) = 0} = 0
and consequently T (n, 1) > 0. Since T is always under the minimum it must be
T (n, 1) = 1.

Conversely, it is clear that when T (n, 1) = 1 then NT (n) = 0 and NT is a
discrete negation. ut



Moreover, NT turns out to be a weak negation and this property characterizes
in fact those discrete negations that are associated to some t-subnorm with
T (n, 1) = 1 (equivalently those that are associated to some t-norm) as follows.

Proposition 6. Let N : Ln → Ln be a discrete negation. Then the following
items are equivalent:

i) There is some t-norm T such that N = NT .
ii) There is some t-subnorm T with T (n, 1) = 1 such that N = NT .

iii) N is a weak negation.

Proof. It is clear that (i) =⇒ (ii).
In order to prove that (ii) =⇒ (iii) suppose that there is some t-subnorm T

with T (n, 1) = 1 such that N = NT . In this case we have N(x) = max{z ∈ Ln |
T (x, z) = 0} and consequently T (x,N(x)) = 0 and this directly implies that

N2(x) = N(N(x)) = max{z ∈ Ln | T (N(x), z) = 0} ≥ x.

Finally, to prove (iii) =⇒ (i) let N be a weak negation and consider the function
given by

T (x, y) =

{
0 if y ≤ N(x),

min{x, y} if y > N(x),
(2)

and let us prove that T is a t-norm3, which clearly will have N as natural
associated negation. Note that the function T given by Equation (2) is increasing
in both variables and for all x > 0 we have T (n, x) = min{n, x} = x, whereas
T (n, 0) = 0 by definition. So, T has neutral element n. Since N is a weak
negation, we have by Proposition 5 that y ≤ N(x) if and only if x ≤ N(y)
and this implies that T is also commutative. Finally, it is an easy but tedious
computation to prove the associativity and so T is a t-norm. ut

In view of the previous proposition, when a discrete negation N is the as-
sociated negation of some t-subnorm it is also the associated negation of some
t-norm. Nevertheless, there can be many more t-subnorms than t-norms having
a specific weak negation as their associated negation (see for instance Proposi-
tion 9). However this is not the case when the associated negation is smooth,
that is, when we consider the classical negation N(x) = n − x as we prove in
the following result, that can be viewed as the counterpart in the discrete case
of Theorem 3.3 in [13].

Proposition 7. Let T : L2
n → Ln be a discrete t-subnorm with natural associ-

ated negation NT (x) = n− x. Then necessarily T is a t-norm.

Proof. We only need to prove that n ∈ Ln is the neutral element of T . Suppose
on the contrary that there is some x ∈ Ln such that T (n, x) = x′ < x. Then

3For any weak negation N , the t-norm T given by Equation (2) is usually known
as the nilpotent minimum with respect to N .



we have n − x′ > n − x and consequently it is T (x, n − x′) > 0. Let us denote
y = T (x, n− x′), then

0 = T (n− x′, x′) = T (n− x′, T (x, n)) = T (T (n− x′, x), n) = T (y, n),

which is a contradiction because by Lemma 1 it is T (n, y) ≥ T (n, 1) = 1 for all
y > 0. Consequently, it must be T (n, x) = x for all x ∈ Ln and T is a t-norm. ut

As a consequence of the previous proposition some known results about
t-subnorms on [0, 1], having strong associated negations (see [13, 14]), can be
proved here for discrete t-subnorms. They have been compiled in the following
proposition.

Proposition 8. Let T : L2
n → Ln be a discrete t-subnorm with natural associ-

ated negation NT (x) = n− x. The following items are equivalent:

i) T is conditionally cancellative, i.e., for any x, y, z ∈ Ln \ {0}, T (x, y) =
T (x, z) > 0 implies y = z.

ii) T is strictly increasing in its positive region, i.e., in {(x, y) ∈ (Ln \ {0})2 |
T (x, y) > 0}.

iii) T is smooth.
iv) T is the  Lukasiewicz t-norm.

Proof. We will do only a sketch of the proof. It is obvious that (i) =⇒ (ii).
To prove (ii) =⇒ (iii) let us suppose x, y ∈ Ln with x < y. We have then

n − y < n − x and so, T (y, n − x) > 0. Let us denote z = T (y, n − x). Then a
similar reasoning as in the [0,1]-case (see Theorem 2 in [14]) proves that it must
be T (y, n − z) = x. That is, there is some z ∈ Ln such that T (y, z) = x and
T satisfies the divisibility property which is equivalent to being T smooth (see
Proposition 7.3.3 in [24]).

(iii) =⇒ (iv). Since T has associated negation NT (x) = n − x it must be
a t-norm and the only smooth t-norm with this condition is the  Luckasiewicz
t-norm.

Finally, (iv) =⇒ (i) is trivial. ut

Proposition 7 allows us to characterize all t-subnorms having natural asso-
ciated negation in the special parametric family of discrete negations given in
Example 2. We do it in the following theorem.

Proposition 9. Let T : L2
n → Ln be a discrete t-subnorm. The following items

hold:

i) Nα is the natural associated negation of T if and only if T is an ordinal
sum of a t-norm T’ on [0, α] with the classical negation N(x) = α − x as
associated negation and a t-subnorm T ′′ on [α, 1].

ii) If T is smooth then Nα is the natural associated negation of T if and only
if T is an ordinal sum of the  Lukasiewicz t-norm on [0, α] and a smooth
t-subnorm T ′′ on [α, 1].



Proof. Let us prove first item (i). Suppose that Nα is the natural associated
negation of T . Considering the restriction of T to the square [0, α]2, we clearly
obtain a t-subnorm, T ′ = T/[0,α]2 , on the finite chain [0, α] with natural asso-
ciated negation given by N(x) = α − x for all x ∈ [0, α]. Applying Proposition
7 we deduce that T ′ must be a t-norm and consequently we have in particular
that T (α, α) = α. In this case, it is well known that T must be an ordinal sum
of the t-norm T ′ on [0, α] and a t-subnorm T ′′ on [α, 1].

Conversely, it is clear that any t-subnorm given by an ordinal sum of a t-
norm T ′ on [0, α] with associated negation N(x) = α − x and a t-subnorm T ′′

on [α, 1], has Nα as natural associated negation.
Finally, note that item (ii) is an immediate consequence of the previous item

and Proposition 8.
ut

The structure of the t-subnorms characterized in Proposition 9 can be viewed
in Figure 2.
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Fig. 2: Negations Nα (left) of the parametric family given in Example 2 and the
structure of the t-subnorms (right) having Nα as natural associated negation
characterized in Proposition 9-(i).

5 Conclusions and future work

In this paper, an in-depth study on the natural associated negations of discrete
t-subnorms has been performed. First of all, the equivalence of weak negations
and symmetrical negations has been proved in the discrete setting in contrast
with what happens in [0, 1] where this equivalence does only hold when the
fuzzy negation is left-continuous. After that, the concept of 0-function of a dis-
crete t-subnorm has been introduced, adapting it from the [0, 1]-case, and the
cases when this function is in fact a discrete negation have been characterized.



From this study, several results concerning the relationship between discrete
t-subnorms and discrete t-norms according to the properties of their natural as-
sociated negation have been presented. Of particular importance is Proposition
6 which proves that weak negations are the only discrete negations which are
the natural associated negations of a discrete t-norm.

As future work, we want to analyse this topic from the other perspective, that
is, if we consider a fixed weak negation N , which t-norms T can be considered
in order to get a new t-norm T ′ such that NT ′ = N and T ′(x, y) = T (x, y) for
all y > N(x)? Equivalently, characterize for which t-norms T the operator given
by

T ′(x, y) =

{
0 if y ≤ N(x),
T (x, y) if y > N(x),

is a t-norm. This problem was already tackled in [4] in the [0, 1]-framework but
it has not been studied yet in the discrete setting.
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