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Plenary talk preparation



Plenary talk preparation

When the organizers invited me to give this plenary talk, I asked
myself the next questions:

1 What can I talk about? (TOPIC)
2 Which type of plenary talk I would like to give? (FORMAT)
3 Which goals do I want to achieve? (GOALS)



What can I talk about?

Two options:

(a) Chess (b) Fuzzy implications



What can I talk about?



Which type of plenary talk I would like to give?

Several plenary talks focused on fuzzy implication functions in
recent years:

Plenary talks focused on basics and state of the art:
É Michał Baczyński, “Fuzzy Implication Functions: Recent Advances”,
EUSFLAT 2011, Aix-les-Bains.

É Michał Baczyński, “Functional Equations Involving Fuzzy
Implications and Their Applications in Approximate Reasoning”,
AGOP 2013, Pamplona.
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Which type of plenary talk I would like to give?

Several plenary talks focused on fuzzy implication functions in
recent years:

Plenary talks focused on some novel research line:
É Balasubramaniam Jayaram, “Fuzzy implications: some algebraic

perspectives”, AGOP 2015, Katowice.



Which type of plenary talk I would like to give?

In my case,
Plenary “position” talk.
É My subjective and personal opinion about the current state of

the research on fuzzy implications.
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Which goals do I want to achieve?

1 Open a discussion about the future
of the theoretical research on fuzzy
implications.

2 Present the existing mess on families
of fuzzy implications.

3 Provide some examples of good
practices and motivations.

4 Expose some not-so-good practices.
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Fuzzy implications: some basics



Fuzzy implications

Let us start with the definition.

Definition (Kitainic, 1993)
A binary operation I : [0,1]2 → [0,1] is said to be a fuzzy implication if
it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0,1].
(I2) I(x,y) ≤ I(x, z) when y ≤ z, for all x ∈ [0,1].
(I3) I(0,0) = I(1,1) = 1 and I(1,0) = 0.



Discussion about the name

Why fuzzy implications?



Discussion about the name

Why fuzzy implications?
It generalizes the classical
implication to fuzzy logic.
It is the usual name to denote
implications in fuzzy logic from the
seventies.



Discussion about the name

We should distinguish between:
implications on fuzzy propositions ⇒ fuzzy implications,
functions that can be used to build fuzzy implications ⇒ fuzzy
implication functions.

When we consider a binary operator I : [0,1]× [0,1]→ [0,1] such that

(A→ B)(x,y) = I(A(x),B(y))

once selected the implication function I, the value (A→ B)(x,y)
depends only on the values taken by A and B at the points x and y.
However,



Discussion about the name

We should distinguish between:
implications on fuzzy propositions ⇒ fuzzy implications,
functions that can be used to build fuzzy implications ⇒ fuzzy
implication functions.

When we consider a binary operator I : [0,1]× [0,1]→ [0,1] such that

(A→ B)(x,y) = I(A(x),B(y))

once selected the implication function I, the value (A→ B)(x,y)
depends only on the values taken by A and B at the points x and y.
However,



Discussion about the name

However,

Definition (Massanet, Mayor, Mesiar, Torrens, 2013)
An operation → defined from [0,1]X × [0,1]Y to [0,1]X×Y , where for all
(A,B) ∈ [0,1]X × [0,1]Y , it returns A→ B ∈ [0,1]X×Y is a fuzzy
implication if the following conditions hold:

Im1) If A ≤ A′ then A→ B ≥ A′ → B for all B ∈ [0,1]Y , i.e., → is
decreasing in the first variable.

Im2) If B ≤ B′ then A→ B ≤ A→ B′ for all A ∈ [0,1]X, i.e., → is
increasing in the second variable.

Im3) If A ∈ {0X,1X} and B ∈ {0Y ,1Y} then

(A→ B) =
§

0X×Y if A = 1X and B = 0Y ,
1X×Y otherwise,

i.e., → extends the crisp implication.



Discussion about the name

Proposition (Massanet, Mayor, Mesiar, Torrens, 2013)
A fuzzy implication → is functionally expressible if, and only if, there
exists a function I : [0,1]× [0,1] −→ [0,1] such that
(A→ B)(x,y) = I(A(x),B(y)) for all A ∈ [0,1]X, B ∈ [0,1]Y , (x,y) ∈ X × Y
satisfying:

i) If a ≤ a′, then I(a,b) ≥ I(a′,b) for all b ∈ [0,1], i.e., I is
non-increasing in the first variable.

ii) If b ≤ b′, then I(a,b) ≤ I(a,b′) for all a ∈ [0,1], i.e., I is
non-decreasing in the second variable.

iii) I(0,0) = I(1,1) = I(0,1) = 1 and I(1,0) = 0 (boundary conditions).



Discussion about the name

Thus, only functionally-expressible fuzzy implications are “fuzzy
implications” in the sense of the first definition. Consequently, a
better name is fuzzy implication functions.

S. Massanet, G. Mayor, R. Mesiar, J. Torrens: On fuzzy implications:
An axiomatic approach. Int. J. Approx. Reasoning 54(9): 1471-1482
(2013)



The game-changing moment

Fuzzy implication functions have been studied from the beginnings
of fuzzy logic and fuzzy sets. Some important old contributions can
be found in:

P. Smets, P. Magrez, Implication in fuzzy logic, International Journal
of Approximate Reasoning 1 (1987) 327-347.

J.C. Fodor, M. Roubens: Fuzzy preference modelling and multicriteria
decision support. Kluwer, Dordrecht (1994)

G.J. Klir, B. Yuan: Fuzzy sets and fuzzy logic. Theory and applica-
tions. Prentice Hall, New Jersey (1995)



The game-changing moment

However, the game-changing publications were:

M. Mas, M. Monserrat, J. Torrens, E.
Trillas: A Survey on Fuzzy Implication
Functions. IEEE Trans. Fuzzy Sys-
tems 15(6): 1107-1121 (2007)



The game-changing moment

However, the game-changing publications were:

M. Baczyński, B. Jayaram: Fuzzy Im-
plications. Studies in Fuzziness and
Soft Computing 231, Springer, 2008.



In the last decade. . .

There has been a boom in publications related on fuzzy implication
functions, both from the theoretical and the applied points of view.



In the last decade. . .

There has been a boom in publications related on fuzzy implication
functions, both from the theoretical and the applied points of view.



In the last decade. . .

More surveys and books entirely devoted to fuzzy implication
functions:

Advances in Fuzzy Implication Func-
tions. (Eds.) M. Baczyński, G. Beli-
akov, H. Bustince, A. Pradera. Stud-
ies in Fuzziness and Soft Computing
300, Springer, 2013.



In the last decade. . .

More surveys and books entirely devoted to fuzzy implication
functions:

M. Baczyński, B. Jayaram, S. Mas-
sanet, J. Torrens: Fuzzy Implications:
Past, Present, and Future. Handbook
of Computational Intelligence, 183-
202 (2015).



Consequences

Large development in the theory and applicationsØ

New applicationsØ

Uselessness generalizations or construction methods✗
Too many untouched open problems✗
Lack of clear goals✗
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Consequences



Where does the research on fuzzy implication
functions go?



The mess of classes of fuzzy implication
functions



Most researched theoretical lines

Among the most researched theoretical lines of research on fuzzy
implication functions, we can highlight:

1 The proposal of new classes of fuzzy implication functions.
2 The characterization of the existing classes of fuzzy implication

functions.
3 The characterization of the intersection between the existing

classes of fuzzy implication functions.
4 The analysis of the additional properties fulfilled by the existing

classes of fuzzy implication functions.
These lines of research are a direct consequence of the definition of
these operators.
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Definition of fuzzy implication functions

Definition
A binary operation I : [0,1]2 → [0,1] is said to be a fuzzy implication
function if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0,1].
(I2) I(x,y) ≤ I(x, z) when y ≤ z, for all x ∈ [0,1].
(I3) I(0,0) = I(1,1) = 1 and I(1,0) = 0.



Flexibility on the definition
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Classes of fuzzy implication functions

This flexibility allows the existence of an infinite number of classes
of fuzzy implication functions with different structures,
performances on the applications and additional properties.

There are basically three main strategies to define classes of fuzzy
implication functions:

1 Combining other fuzzy logical operators such as fuzzy
negations, conjunctions, disjunctions, etc.

2 Using unary monotone functions.
3 Constructing fuzzy implication functions from other given fuzzy

implication functions.
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Strategy 1: Combinations of fuzzy logical
operators
(S,N)-implications

Definition (Alsina, Trillas, 2003)
Let S be a t-conorm and N a fuzzy negation. Then the binary
operator IS,N : [0,1]2 → [0,1] given by

IS,N(x,y) = S(N(x),y), for all x,y ∈ [0,1]

is called the (S,N)-implication derived from S and N.

They generalize the classical material implication ¬p∨ q.



Strategy 1: Combinations of fuzzy logical
operators
Generalizations of (S,N)-implications

Several generalizations have been proposed by changing S by:

1 Disjunctive uninorm U ⇒ (U,N)-implications.
M. Baczynski, B. Jayaram: (U,N)-implications and their characteri-
zations. Fuzzy Sets and Systems 160(14): 2049-2062 (2009)

2 Co-copula.
R. R. Yager: Modeling holistic fuzzy implication using co-copulas. FO
& DM 5(3): 207-226 (2006)

3 TS-functions given by

F(x,y) = f−1((1− λ)f (T(x,y)) + λf (S(x,y))), for all x,y ∈ [0,1].

H. Bustince, J. Fernandez, A. Pradera, G. Beliakov: On (TS,N)-fuzzy
implications. Proc. AGOP 2011, pp. 93-98, 2011.
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Strategy 1: Combinations of fuzzy logical
operators
Generalizations of (S,N)-implications

Several generalizations have been proposed by changing S by:
4 Semi-uninorm.

Z.-B. Li, Y. Su and H.-W. Liu: Generalization of (U,N)-implications.
Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems, Vol. 23, No. 03, pp. 367-377 (2015)

5 Commutative semi-uninorms and pseudo-uninorms.
Z.-B. Li and H.-W. Liu: Generalizations of (U, N)-implications derived
from commutative semi-uninorms and pseudo-uninorms . Journal of
Intelligent & Fuzzy Systems, vol. 29, no. 5, pp. 2177-2184, 2015

6 Any aggregation function.
Y. Ouyang: On fuzzy implications determined by aggregation oper-
ators. Information Sciences, Vol. 193, 153-162 (2012)
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Strategy 1: Combinations of fuzzy logical
operators
Generalizations of (S,N)-implications

Several generalizations have been proposed by changing S by:
7 Grouping function ⇒ (G,N)-implications.

G.P. Pereira, B. Bedregal, R.H.N. Santiago: On (G,N)-implications de-
rived from grouping functions. Information Sciences, Vol. 279, pp.
1-17, 2014.

8 Many others. . .
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Strategy 1: Combinations of fuzzy logical
operators
R-implications

Definition (Pedrycz, 1982; Miyakoshi, Shimbo, 1985)
Let T be a t-norm. Then the binary operator IT : [0,1]2 → [0,1] given
by

IT(x,y) = sup{z ∈ [0,1] | T(x, z) ≤ y}, for all x,y ∈ [0,1]

is called the R-implication derived from T.

They come from the residuated lattice theory and they satisfy the
residuation property:

T(x,y) ≤ z⇔ IT(x, z) ≥ y.



Strategy 1: Combinations of fuzzy logical
operators
Generalizations of R-implications

Several generalizations have been proposed by changing T by:

1 Conjunctive uninorms ⇒ RU-implications.
B. De Baets, J. Fodor: Residual operators of uninorms. Soft Comput-
ing, Vol. 3, No. 2, pp. 89-100 (1999)

2 Copula, quasi-copula and semi-copula.
F. Durante, E.P. Klement, R. Mesiar, C. Sempi: Conjunctors and their
residual implicators: characterizations and construction methods.
Mediterranean Journal of Mathematics, vol. 4, no. 3, pp. 343-356,
2007.

3 Any aggregation function.
Y. Ouyang: On fuzzy implications determined by aggregation oper-
ators. Information Sciences, Vol. 193, 153-162 (2012)
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Several generalizations have been proposed by changing T by:
4 Overlap functions ⇒ RO-implications.

B. Bedregal and G.P. Dimuro: On residual implications derived from
overlap functions. Information Sciences Vol. 312, pp. 78-88, 2015.

5 Many others. . .
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Strategy 1: Combinations of fuzzy logical
operators
QL and D-implications

Definition (Trillas, Valverde, 1981)
Let T be a t-norm, S a t-conorm and N a fuzzy negation. Then:

the binary operator IT,S,N : [0,1]2 → [0,1] given by

IT,S,N(x,y) = S(N(x),T(x,y)), for all x,y ∈ [0,1]

is called the QL-implication derived from T, S and N,
the binary operator IT,S,N : [0,1]2 → [0,1] given by

IT,S,N(x,y) = S(y,T(N(x),N(y))), for all x,y ∈ [0,1]

is called the D-implication derived from T, S and N.

They come from Quantum logic and the Dishkant implication,
respectively. They are very related.



Strategy 1: Combinations of fuzzy logical
operators
Generalizations of QL-implications and D-implications

Several generalizations have been proposed by changing T and S
by:

1 Conjunctive and disjunctive uninorms.
M. Mas, M. Monserrat, J. Torrens: Two types of implications de-
rived from uninorms. Fuzzy Sets and Systems 158(23): 2612-2626
(2007).

2 Overlap and Grouping operators.
G.P. Dimuro, B. Bedregal, H. Bustince, A. Jurio, M. Baczyński, K. Mis:
QL-operations and QL-implication functions constructed from tuples
(O,G,N) and the generation of fuzzy subsethood and entropy mea-
sures. Int. J. Approx. Reasoning 82: 170-192 (2017).

3 Others.
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Strategy 1: Combinations of fuzzy logical
operators
Classes related to probability theory

Definition (Grzegorzewski, 2011,2013)
Let C be a copula. Then:

the function IC : [0,1]2 → [0,1] given by

IC(x,y) =

�

1 if x = 0,
C(x,y)

x if x > 0,

is called the probabilistic implication based on the copula C,
the function I∗

C
: [0,1]2 → [0,1] given by

I∗
C
(x,y) =

�

1 if x = 0,
x+y−1+C(1−x,1−y)

x if x > 0,

is called the survival implication based on the copula C.



Strategy 1: Combinations of fuzzy logical
operators
Classes related to probability theory

Definition (Grzegorzewski, 2011,2013)
Let C be a copula. Then:

the function ĨC : [0,1]2 → [0,1] given by

ĨC(x,y) = C(x,y)− x+ 1 for all x,y ∈ [0,1]

is called the probabilistic S-implication based on the copula C,
the function Ĩ∗

C
: [0,1]2 → [0,1] given by

Ĩ∗
C
(x,y) = y +C(1− x,1− y) for all x,y ∈ [0,1]

is called the survival S-implication based on the copula C.



Strategy 1: Combinations of fuzzy logical
operators
Classes related to probability theory

These classes of fuzzy implications
take into consideration both imprecision
modelled by fuzzy concepts and ran-
domness described by tools originated
by probability theory.



Strategy 2: Use of unary monotone functions
Yager’s f and g-generated implications

Definition (Yager, 2004)
Let f : [0,1]→ [0,∞] be a strictly decreasing and continuous function
with f (1) = 0. The function If : [0,1]2 → [0,1] defined by

If (x,y) = f−1(x · f (y)), x,y ∈ [0,1]

with the understanding 0 ·∞ = 0, is called an f -generated
implication.



Strategy 2: Use of unary monotone functions
Yager’s f and g-generated implications

Definition (Yager, 2004)
Let g : [0,1]→ [0,∞] be a strictly increasing and continuous function
with g(0) = 0. The function Ig : [0,1]2 → [0,1] defined by

Ig(x,y) = g(−1)
�

1

x
· g(y)

�

, x,y ∈ [0,1]

with the understanding 1
0 =∞ and ∞ · 0 =∞, is called a g-generated

implication, where the function g(−1) is the pseudo-inverse of g.



Strategy 2: Use of unary monotone functions
Generalizations of Yager’s f and g-generated implications
Several generalizations have been proposed by generalizing either
the expression or the properties of f and g.

1 In f -generated implications, x is generalized to an increasing
g : [0,1]→ [0,1] such that g(0) = 0 and g(1) = 1 ⇒
(f ,g)-implications.

A. Xie, H. Liu: A generalization of Yager’s f-generated implications.
Int. Journal of Approximate Reasoning 54(1): 35-46 (2013).

2 In g-generated implications, the product is generalized to an
increasing operator ug : [1,+∞]→ [0,+∞] such that
ug(+∞,0) = +∞ and ug(1,y) = y for all y ∈ [0,g(1)].

F.-X. Zhang, H.-W. Liu: On a new class of implications: -implications
and the distributive equations. Int. Journal of Approximate Reason-
ing, Vol. 54, Issue 8, pp. 1049-1065, 2013.

3 Changing x and 1
x by x

e and e
x with e ∈ (0,1].

R. Fernandez-Peralta, S. Massanet: On the Characterization of a
Family of Generalized Yager’s Implications. IPMU (1) 2018: 636-
648.
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Strategy 2: Use of unary monotone functions
Other classes related to Yager’s classes

Definition (Massanet, Torrens, 2011)
Fix an e ∈ (0,1) and let h : [0,1]→ [−∞,∞] be a strictly increasing
and continuous function with h(0) = −∞, h(e) = 0 and h(1) = +∞.
The function Ih : [0,1]2 → [0,1] defined by

I(x,y) =







1 if x = 0,
h−1(x · h(y)) if x > 0 and y ≤ e,

h−1
�

1
x · h(y)

�

if x > 0 and y > e,

is called an h-implication.



Strategy 2: Use of unary monotone functions
Generalizations of h-implications

Several generalizations have been proposed:

1 Changing x and 1
x by x

e and e
x with e ∈ (0,1] ⇒ (h,e)-implications.

S. Massanet, J. Torrens: On a new class of fuzzy implications: h-
Implications and generalizations. Inf. Sci. 181(11): 2111-2127
(2011).

2 Allowing now that h(0) > −∞ and h(1) < +∞ ⇒ Generalized
h-generators.

S. Massanet, J. Torrens: On a new class of fuzzy implications: h-
Implications and generalizations. Inf. Sci. 181(11): 2111-2127
(2011).

3 Both generalizations together.
S. Massanet, J. Torrens: On a new class of fuzzy implications: h-
Implications and generalizations. Inf. Sci. 181(11): 2111-2127
(2011).
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Strategy 2: Use of unary monotone functions
Generalizations of h-implications

4 Changing the inner products by a minimum and a maximum ⇒
(h,min)-implications.

H.-W. Liu : A new class of fuzzy implications derived from general-
ized h-generators. Fuzzy Sets and Systems 224(11): 63-92 (2013).

5 Many others. . .

Check the excellent review on this topic:
D. Hlinená, M. Kalina, P. Král’: Implication Functions Gener-
ated Using Functions of One Variable. In Advances in Fuzzy
Implication Functions, pp. 125-153 (2013).
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Strategy 3: Constructions from other
implications
Given one or several fuzzy implication functions, there exist many
construction methods of new fuzzy implication functions. Let I, J be
fuzzy implication functions and N a fuzzy negation:

1 The N-reciprocation

IN(x,y) = I(N(y),N(x)), x,y ∈ [0,1].

2 The medium contrapositivisation

Im
N
(x,y) = min{I(x,y)∨N(x), IN(x,y)∨ y}, x,y ∈ [0,1].

3 The φ-conjugation

Iφ(x,y) = φ−1(I(φ(x), φ(y))), x,y ∈ [0,1],

where φ is an automorphism on [0,1].
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Strategy 3: Constructions from other
implications
Let I, J be fuzzy implication functions and N a fuzzy negation:

4 The min and max operations:

(I∨ J)(x,y) = max{I(x,y), J(x,y)}, x,y ∈ [0,1],

(I∧ J)(x,y) = min{I(x,y), J(x,y)}, x,y ∈ [0,1].

5 The convex combination with λ ∈ [0,1]:

Iλ
I,J
(x,y) = λ · I(x,y) + (1− λ) · J(x,y), x,y ∈ [0,1].

6 The þ-method:

(Iþ J)(x,y) = I(x, J(x,y)), x,y ∈ [0,1].

N.R. Vemuri, B. Jayaram: Representations through a monoid on the
set of fuzzy implications, Fuzzy Sets and Systems, 247 (2014) 51-
67.
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Strategy 3: Constructions from other
implications
Let I, J be fuzzy implication functions and N a fuzzy negation:

7 The aggregation method with an aggregation function F

I(x,y) = F(I(x,y), J(x,y)), x,y ∈ [0,1].

T. Calvo, J. Martín, G. Mayor: Aggregation of implication functions.
In Proceedings of EUSFLAT-13, pp. 569-574. Atlantis Press, 2013.

8 The FNI-method with an aggregation function F such that
F(0,1) = 1:

IF,N,I(x,y) = F(N(x), I(x,y)), x,y ∈ [0,1].

I. Aguiló, J. Suñer, J. Torrens: How to modify a fuzzy implication func-
tion to satisfy a desired property, International Journal of Approxi-
mate Reasoning 103 (2018) 168-183.
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Strategy 3: Constructions from other
implications
Let I, J be fuzzy implication functions and N a fuzzy negation:

7 Construction based on semi-copulas B:

JI,B(x,y) = I(x,B(x,y)), x,y ∈ [0,1].

M. Baczyński, P. Grzegorzewski, R. Mesiar, P. Helbin, W. Niemyska:
Fuzzy implications based on semicopulas. Fuzzy Sets and Systems
323: 138-151 (2017)

8 The quadratic polynomial construction method:

IF(x,y) = F(x,y, I(x,y)), x,y ∈ [0,1]

where F : [0,1]3 → [0,1] is a polynomial quadratic function.
A. Kolesárová, S. Massanet, R. Mesiar, J.V. Riera, J. Torrens: Poly-
nomial constructions of fuzzy implication functions: The quadratic
case. Inf. Sci. 494: 60-79 (2019)
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Strategy 3: Constructions from other
implications
Threshold constructions and ordinal sums

Let I1, I2,. . . , In be fuzzy implication functions:
1 The horizontal threshold method with e ∈ [0,1]

e

I1

I2

S. Massanet, J. Torrens: Threshold generation method of construc-
tion of a new implication from two given ones. Fuzzy Sets and Sys-
tems 205: 50-75 (2012)



Strategy 3: Constructions from other
implications
Threshold constructions and ordinal sums

2 The vertical threshold method with e ∈ [0,1]

e

I1 I2

S. Massanet, J. Torrens: On the vertical threshold generation method
of fuzzy implication and its properties. Fuzzy Sets and Systems 226:
32-52 (2013)



Strategy 3: Constructions from other
implications
Threshold constructions and ordinal sums

3 Ordinal sum “t-norm style”.

. .
.

I1

I2

In

IGD

Y. Su, A. Xie, H. Liu: On ordinal sum implications, Information Sci-
ences, 293, 251-262 (2015).



Strategy 3: Constructions from other
implications
Threshold constructions and ordinal sums

4 Other versions of the ordinal sum “t-norm style”.

. .
.

I1

I2

In

IRS

P. Drygaś and Anna Król: Various Kinds of Ordinal Sums of Fuzzy
Implications, In: Novel Developments in Uncertainty Representation
and Processing, 37-49. Springer (2016).



Strategy 3: Constructions from other
implications
Threshold constructions and ordinal sums

5 Other versions of the ordinal sum “t-norm style”.

M. Baczyński, P. Drygas, A. Król, R. Mesiar: New types of ordinal sum
of fuzzy implications. Proc. FUZZ-IEEE 2017: 1-6.



Strategy 3: Constructions from other
implications
Threshold constructions and ordinal sums

6 Ordinal sum “(S,N)-style”.

. . .

I1

In−1

In

IKD

S. Massanet, J.V. Riera, J. Torrens: A New Look on the Ordinal Sum
of Fuzzy Implication Functions. IPMU (1) 2016: 399-410.



New classes of fuzzy implication functions



Time for tidying up



Reasons for tidying up

There are too many classes of fuzzy implication functions
introduced:

without a proper motivation,
without an in-depth study,
without an axiomatic characterization.

leading to
uselessness research,
duplicated efforts.



Reasons for tidying up

Let us focus on these two papers:
M. Baczyński, P. Grzegorzewski, P. Helbin and W. Niemyska. Prop-
erties of the probabilistic implications and S-implications. Inf. Sci.,
331:2-14, 2016.

P. Helbin and M. Baczyński. Properties of the survival implications
and S-implications. In J. M. Alonso et al., editors, Proc. of IFSA-
EUSFLAT-15, pages 807-814. Atlantis Press, 2015.

In these papers, the authors study the fulfillment of the law of
importation

I(T(x,y), z) = I(x, I(y, z)), for all x,y, z ∈ [0,1]. (LIT)

and the Modus Ponens property

T(x, I(x,y)) ≤ y, x,y ∈ [0,1]. (MP(T))

where T is a t-norm for probabilistic and survival implications.



Reasons for tidying up

Definition
Let C be a copula. Then:

the function IC : [0,1]2 → [0,1] given by

IC(x,y) =

�

1 if x = 0,
C(x,y)

x if x > 0,

is called the probabilistic implication based on the copula C,
the function I∗

C
: [0,1]2 → [0,1] given by

I∗
C
(x,y) =

�

1 if x = 0,
x+y−1+C(1−x,1−y)

x if x > 0,

is called the survival implication based on the copula C.

They seem different classes. . .



Reasons for tidying up

but actually, they coincide!

S. Massanet, A. Pradera, D. Ruiz-Aguilera, J. Torrens: Equiva-
lence and characterization of probabilistic and survival implications.
Fuzzy Sets and Systems 359: 63-79 (2019)

Thus, unintentionally, the same results have been rediscovered in
two different papers!
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Reasons for tidying up

Theorem
Let I : [0,1]2 → [0,1] be a binary function. The following statements are
equivalent:

i) I is a probabilistic implication derived from a copula C.

ii) I is a survival implication derived from a copula C′.

iii) I satisfies (I1), I(1,y) = y, I(0,y) = 1 for all y ∈ [0,1], the property

x2I(x2,y1) + x1I(x1,y2) ≤ x1I(x1,y1) + x2I(x2,y2)

for all x1 ≤ x2 and y1 ≤ y2, and

NI(x) = ND1(x) =
§

1 if x = 0,
0 otherwise.

Moreover, C and C′ are uniquely given by

C(x,y) = xI(x,y),
C′(x,y) = x+ y − 1+ (1− x)I(1− x,1− y),

for all x,y ∈ [0,1].
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Good and not-so-good practices

It is time to analyze some practices on the study of classes of fuzzy
implication functions.



Not-so-good practices
Ultimate goal: another class!

The following schema is recurrent in many papers:

1 A new class of fuzzy implication functions is proposed.
2 Some examples are given.
3 Some additional properties are studied for this family, many

times in a lightly way.
4 Some intersections with the most important families are

studied, many times in a lightly way.
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3 Some additional properties are studied for this family, many

times in a lightly way.
4 Some intersections with the most important families are

studied, many times in a lightly way.



Not-so-good practices
Ultimate goal: another class!

Motivation: A lot of classes of fuzzy implication functions are
needed because in

E. Trillas, M. Mas, M. Monserrat, J. Torrens: On the representation of
fuzzy rules. Int. J. Approx. Reasoning 48(2): 583-597 (2008)

it is said that for each application, depending on the context and the
proper behaviour of the fuzzy “IF-THEN” rule, different implications
can be suitable in each case.



Not-so-good practices
Ultimate goal: another class!

Why is a not-so-good practice?

1 Too many classes are already available.
2 No application is given where the new class perform better than

the existing classes.
3 The new class does not have any interesting feature in terms of

the additional properties it satisfies.
4 No characterization is usually proved.
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A different schema is the following one:

1 A desirable property (or a set of properties) is fixed.
2 The existing classes do not fulfill this property in general.
3 A new class that fulfills this property is proposed.
4 Other additional properties are analyzed.
5 The characterization of the new class is given.



Good practices
First desirable property, then new class

A different schema is the following one:
1 A desirable property (or a set of properties) is fixed.

2 The existing classes do not fulfill this property in general.
3 A new class that fulfills this property is proposed.
4 Other additional properties are analyzed.
5 The characterization of the new class is given.



Good practices
First desirable property, then new class

A different schema is the following one:
1 A desirable property (or a set of properties) is fixed.
2 The existing classes do not fulfill this property in general.

3 A new class that fulfills this property is proposed.
4 Other additional properties are analyzed.
5 The characterization of the new class is given.



Good practices
First desirable property, then new class

A different schema is the following one:
1 A desirable property (or a set of properties) is fixed.
2 The existing classes do not fulfill this property in general.
3 A new class that fulfills this property is proposed.

4 Other additional properties are analyzed.
5 The characterization of the new class is given.



Good practices
First desirable property, then new class

A different schema is the following one:
1 A desirable property (or a set of properties) is fixed.
2 The existing classes do not fulfill this property in general.
3 A new class that fulfills this property is proposed.
4 Other additional properties are analyzed.

5 The characterization of the new class is given.



Good practices
First desirable property, then new class

A different schema is the following one:
1 A desirable property (or a set of properties) is fixed.
2 The existing classes do not fulfill this property in general.
3 A new class that fulfills this property is proposed.
4 Other additional properties are analyzed.
5 The characterization of the new class is given.



Good practices
First desirable property, then new class

Why is a good practice?
1 A new class with a different behaviour with respect to the

existing ones is presented.
2 The desirable property is connected with some applications.
3 If the characterization is achieved, the intersections with other

classes are straightforward to obtain.



Good practices
First desirable property, then new class: an example

In 1982, Mizumoto and Zimmerman introduced the following
example:

If the tomato is red, then it is ripe.
If the tomato is very red, then it is very ripe.
If the tomato is little red, then it is little ripe.



Good practices
First desirable property, then new class: an example

These fuzzy conditionals involve linguistic modifiers such as very or
little which are usually modeled through Zadeh’s potential modifiers:

very x is computed as x2,

little x is computed as x
1
2 .

Although Zadeh used the product t-norm TP(x,y) = xy, any
continuous t-norm can be considered to model them.



Good practices
First desirable property, then new class: an example

It is common sense to expect that a proper fuzzy implication
function when applied to these fuzzy conditionals

If the tomato is red, then it is ripe.
If the tomato is very red, then it is very ripe.
If the tomato is little red, then it is little ripe.

the same truth value is obtained. Indeed, whenever the same
linguistic modifier is applied to both the antecedent and the
consequent, the truth value of the fuzzy conditional remains the
same.



Good practices
First desirable property, then new class: an example

From a continuous t-norm T, its powers can be defined. For all
x ∈ [0,1]:

n ∈ Z+, n ≥ 2: x
(n)
T = T(

n times
︷ ︸︸ ︷

x,x, ...,x).

q ∈ Q+: x

�

1
n

�

T = sup{z ∈ [0,1] | z(n) ≤ x}, x
(m

n )
T =

�

x

�

1
n

�

T

�(m)

r ∈ R+: x
(r)
T = lim

n→∞
x
(an)
T where lim

n→∞
an = r with an ∈ Q+.

Proposition
Let T be a continuous Archimedean t-norm with additive generator
t. Then

x
(r)
T = t−1(min{t(0), rt(x)}) for all x ∈ [0,1] and r ∈ [0,+∞].
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Good practices
First desirable property, then new class: an example

Definition
Let I : [0,1]2 → [0,1] be a binary function. It is said that I is invariant
with respect to T-powers, or simply that it is T-power invariant when

I(x,y) = I
�

x
(r)
T ,y

(r)
T

�

. (PIT)

holds for all real number r > 0 and for all x,y ∈ [0,1] such that

x
(r)
T ,y

(r)
T 6= 0,1.



Good practices
First desirable property, then new class: an example

Consider the fuzzy conditional

If the price of a computer is 450, then it is very good.

Most probably, we disagree with the previous statement and we will
linguistically modify the consequent to fit it better to our idea.

Thus, we set the value of x→ y as the highest possible power of y
such that y up to this power becomes greater than or equal to x.
Formally,



Good practices
First desirable property, then new class: an example

Definition
A binary operator I : [0,1]2 → [0,1] is said to be a T-power based
implication if there exists a continuous t-norm T such that

I(x,y) = sup{r ∈ [0,1] | y(r)
T ≥ x} for all x,y ∈ [0,1].

If I is a T-power based implication, then it will be denoted by IT .



Good practices
First desirable property, then new class: an example

Proposition
Let T be a continuous t-norm and IT its power based implication.
Then IT is T-power invariant if and only if T is a strict ordinal sum
t-norm, i.e., T is an ordinal sum t-norm of the form T =

�

〈aj,bj,Tj〉
�

j∈J
being Tj a strict t-norm for all summands [aj,bj] such that aj 6= 0.



Good practices
First desirable property, then new class: an example

Proposition
Let I : [0,1]2 → [0,1] be a binary function. Then I is a T-power based
implication for some nilpotent Archimedean t-norm T if and only if
the following properties hold:

a) I satisfies I(x,y) = 1⇔ x ≤ y,

b) I(x,y) · I(y,0) = I(x,0) for all x > y,

c) the horizontal section I(−,0) : [0,1]→ [0,1] is a strictly
decreasing and continuous function with I(1,0) = 0.

Moreover, in this case the t-norm T is the nilpotent Archimedean
t-norm with additive generator t(x) = I(x,0) for all x ∈ [0,1].



Good practices
First desirable property, then new class: an example

For more details,
S. Massanet, J. Recasens, J. Torrens: Fuzzy implication functions
based on powers of continuous t-norms. Int. J. Approx. Reason-
ing 83: 265-279 (2017)

S. Massanet, J. Recasens, J. Torrens: Corrigendum to "Fuzzy impli-
cation functions based on powers of continuous t-norms" [Int. J.
Approx. Reason. 83 (2017) 265-279]. Int. J. Approx. Reasoning
104: 144-147 (2019)

S. Massanet, J. Recasens, J. Torrens: Some characterizations of T-
power based implications. Fuzzy Sets and Systems 359: 42-62
(2019)



Good practices
First desirable property, then new class: an example

Other examples of this practice:
D. Paternain, H. Bustince, J. Fernández, J.A. Sanz, M. Baczyński, G.
Beliakov, R. Mesiar: Strong Fuzzy Subsethood Measures and Strong
Equalities Via Implication Functions. Multiple-Valued Logic and Soft
Computing 22(4-6): 347-371 (2014)

B. Jayaram, R. Mesiar: On special fuzzy implications. Fuzzy Sets and
Systems 160(14): 2063-2085 (2009)

B. Jayaram: On the Law of Importation (x∧ y)→ z ≡ (x→ (y→ z)) in
Fuzzy Logic. IEEE Trans. Fuzzy Systems 16(1): 130-144 (2008)



Good practices
Looking for Characterizations

An axiomatic characterization of a class of fuzzy implication
functions is a set of additional properties which distinguish that
class from the other classes.



Good practices
Looking for Characterizations

The exchange principle,

I(x, I(y, z)) = I(y, I(x, z)), x,y, z ∈ [0,1]. (EP)

The law of importation with respect to a t-norm T,

I(T(x,y), z) = I(x, I(y, z)), x,y, z ∈ [0,1]. (LI(T))

The left neutrality principle,

I(1,y) = y, y ∈ [0,1]. (NP)
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The ordering property,

x ≤ y⇐⇒ I(x,y) = 1, x,y ∈ [0,1]. (OP)

The identity principle,

I(x,x) = 1, x ∈ [0,1]. (IP)

The contrapositive symmetry with respect to a fuzzy negation N,

I(x,y) = I(N(y),N(x)), x,y ∈ [0,1]. (CP(N))
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1 Some insights on the possible applications are discovered.
2 The intersections with other classes are easier to obtain.
3 The new class can be located in the set of all fuzzy implication
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Why is a good practice?
1 Some insights on the possible applications are discovered.
2 The intersections with other classes are easier to obtain.
3 The new class can be located in the set of all fuzzy implication

functions.



Good practices
Looking for Characterizations: an example

Remember the definition of Yager’s f -generated implications:

Definition
Let f : [0,1]→ [0,∞] be a strictly decreasing and continuous function
with f (1) = 0. The function If : [0,1]2 → [0,1] defined by

If (x,y) = f−1(x · f (y)), x,y ∈ [0,1]

with the understanding 0 ·∞ = 0, is called an f -generated
implication.



Good practices
Looking for Characterizations: an example

Theorem

Let I : [0,1]2 → [0,1] be a binary function. Then the following
statements are equivalent:

(i) I is an f -generated implication with f (0) <∞.

(ii) I satisfies (LI) with TP and NI is a strict negation.

Moreover, in this case the f -generator is unique up to a positive
multiplicative constant and it is given by f (x) = N−1

I (x).
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Theorem
Let I : [0,1]2 → [0,1] be a binary function. Then the following
statements are equivalent:

(i) I is an f -generated implication with f (0) =∞.

(ii) I satisfies (LI) with TP, I is continuous except at (0,0) and
I(x,y) = 1⇔ x = 0 or y = 1.

Moreover, in this case the f -generator, that is unique up to a positive
multiplicative constant, is given by

f (x) =











h−1
k (x) if k ≤ x ≤ 1,

1
h−1

x
(k)

if 0 < x < k,

∞ if x = 0,

where k ∈ (0,1).



Good practices
Looking for Characterizations: an example

These characterizations can be found in
S. Massanet, J. Torrens: On the characterization of Yager’s implica-
tions. Inf. Sci. 201: 1-18 (2012).



Good practices
Looking for Characterizations: an example

Another nice characterization (representation?) is available in terms
of equivalence classes.

Definition
Let I and J be two fuzzy implication functions. If there exist some
increasing automorphism φ : [0,1]→ [0,1] such that

J(x,y) = φ(I(x, φ−1(y))), x,y ∈ [0,1]

we say that J is a φ-pseudo conjugate of I.

Definition
Let I be a fuzzy implication function. The equivalence class
containing I can be given by

[I] = {J ∈ FI | J is a φ − pseudo conjugate of I}.



Good practices
Looking for Characterizations: an example

Denoting by IF,∞ and IF,1 the classes of f -generated implications with
f (0) = +∞ and f (0) < +∞,

Theorem

IF,∞ = [IYG].

Theorem

IF,1 = [IRC].

More details in:
N.R. Vemuri, B. Jayaram: Representations through a monoid on the
set of fuzzy implications, Fuzzy Sets and Systems, 247 (2014) 51-
67.



Good practices
Looking for Characterizations

Other recent characterizations:
I. Aguiló, J. Suñer, J. Torrens: A characterization of residual impli-
cations derived from left-continuous uninorms. Inf. Sci. 180(20):
3992-4005 (2010)

Y. Shi, B. Van Gasse, D. Ruan, E.E. Kerre: On the first place antitonic-
ity in QL.implications. Fuzzy Sets and Systems 159(22): 2988-3013
(2008)

S. Massanet, A. Pradera, D. Ruiz-Aguilera, J. Torrens: From three
to one: Equivalence and characterization of material implications
derived from co-copulas, probabilistic S-implications and survival S-
implications. Fuzzy Sets and Systems 323: 103-116 (2017)



Good practices
Looking for Characterizations
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Development without control is useless.
We should avoid proposing new classes of fuzzy implication
functions without a clear motivation.
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We should solve some important open problems in the literature.
We must open new application fields for fuzzy implications.



Thank you for your attention!
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