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Introduction



Motivation

Fuzzy implication functions have been extensively studied in the last
decades mainly from two perspectives: from the theoretical point of view
and from its possible applications.

The study of additional properties is useful to obtain feasible and more
adequate fuzzy implication functions in the applications.
Two of such additional properties are the (generalized) Modus Ponens
and Modus Tollens. These properties are of paramount importance in
approximate reasoning.
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Motivation

The (generalized) Modus Ponens and Modus Tollens are usually
expressed by the following two functional inequalities:

T (x , I(x , y)) ≤ y , for all x , y ∈ [0,1],

T (N(y), I(x , y)) ≤ N(x), for all x , y ∈ [0,1],

where T is a t-norm, I is a fuzzy implication function and N is a fuzzy
negation.



Motivation

These properties have been studied in the literature for the most usual
families of fuzzy implication functions such as (S,N), R, QL and
D-implications derived from t-norms and t-conorms.

Even recently, a whole new line of research has been proposed in which
the t-norm T is generalized to a more general conjunction such as a
conjunctive uninorm or an overlap function, leading to the so-called
U-Modus Ponens or O-Modus Ponens.
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Motivation

Although functional inequalities of Modus Ponens and Modus Tollens
have quite similar expressions, it is well known that both properties are
not equivalent.

Thus, the simultaneous fulfillment of both properties was studied for the
first time for some restricted classes of (S,N), R, QL and D-implications.
Also, it was proved that when the fuzzy negation N is a strong negation,
both properties are equivalent if the fuzzy implication function satisfies
the contrapositive symmetry with respect to N.
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Main objective

We want to analyze which residual implications derived from uninorms, or
RU-implications for short, satisfy both the Modus Ponens and the Modus
Tollens properties with respect to the same t-norm T and a fuzzy negation N
(continuous, but not necessarily strong).



Preliminaries



Fuzzy Implication Function

Definition
A binary operator I : [0,1]× [0,1]→ [0,1] is said to be a fuzzy implication
function if it satisfies:

I1) I is decreasing in the first variable and increasing in the second one,
I2) I(0,0) = I(1,1) = 1 and I(1,0) = 0.



Fuzzy Implication Function

Definition
A binary operator I : [0,1]× [0,1]→ [0,1] is said to be a fuzzy implication
function if it satisfies:
I1) I is decreasing in the first variable and increasing in the second one,

I2) I(0,0) = I(1,1) = 1 and I(1,0) = 0.



Fuzzy Implication Function

Definition
A binary operator I : [0,1]× [0,1]→ [0,1] is said to be a fuzzy implication
function if it satisfies:
I1) I is decreasing in the first variable and increasing in the second one,
I2) I(0,0) = I(1,1) = 1 and I(1,0) = 0.



Fuzzy Negation

Definition
A function N : [0,1]→ [0,1] is said to be a fuzzy negation if it is decreasing
with N(0) = 1 and N(1) = 0. A fuzzy negation N is said to be strong when it is
an involution, i.e.,

N(N(x)) = x for all x ∈ [0,1]



Negation induced by a t-norm
Let T be a t-norm. A function NT : [0,1]→ [0,1] defined as

NT (x) = sup{y ∈ [0,1] | T (x , y) = 0}, x ∈ [0,1]

is called the natural negation of T .

Natural negation
Let I be a fuzzy implication. NI defined by

NI(x) = I(x ,0) for all x ∈ [0,1]

is a fuzzy negation, called the natural negation of I.
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Let T be a t-norm. A function NT : [0,1]→ [0,1] defined as

NT (x) = sup{y ∈ [0,1] | T (x , y) = 0}, x ∈ [0,1]

is called the natural negation of T .

Natural negation
Let I be a fuzzy implication. NI defined by

NI(x) = I(x ,0) for all x ∈ [0,1]

is a fuzzy negation, called the natural negation of I.



Uninorm

Definition
A uninorm is a two-place function U : [0,1]2 → [0,1] that is associative,
commutative, increasing in each place and there exists some element
e ∈ [0,1], called neutral element, such that U(e, x) = x for all x ∈ [0,1].

If e = 0, U is a t-conorm. If e = 1, U is a t-norm.

If e ∈]0,1[, U has the following structure:
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General structure of a uninorm
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Classes of uninorms

T

S

A(e)

A(e)

0
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e 1

Ulin, if U(x , y) ∈ {x , y} in A(e)

I Umin, where U(x , y) = min(x , y) in A(e)
〈T , e,S〉min

I Umax, where U(x , y) = max(x , y) in A(e)
〈T , e,S〉max

I Uide, satisfying U(x , x) = x

Ucts, with T i S continuous

I Ucos, continuous in ]0, 1[2

F Urep, representable
U(x , y) = h−1(h(x) + h(y))
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Idempotent uninorms

Theorem

U is an idempotent uninorm with neutral element e ∈ [0, 1] if and only if there exists a
non increasing function g : [0, 1]→ [0, 1], symmetric with respect to the identity
function, with g(e) = e, such that

U(x , y) =


min(x , y) if y < g(x) or (y = g(x) and x < g2(x)),
max(x , y) if y > g(x) or (y = g(x) and x > g2(x)),
x or y if y = g(x) and x = g2(x),

being commutative in the points (x , y) such that y = g(x) with x = g2(x).

Notation: U ≡ 〈g, e〉ide.



Representable uninorms

Definition

A uninorm U, with neutral element e ∈ ]0, 1[ , is called representable if there exists a
strictly increasing function h : [0, 1]→ [−∞,+∞] (called an additive generator of U,
which is unique up to a multiplicative constant k > 0), with h(0) = −∞, h(e) = 0 and
h(1) = +∞, such that U is given by

U(x , y) = h−1(h(x) + h(y))

for all (x , y) ∈ [0, 1]2 \ {(0, 1), (1, 0)}. We have either U(0, 1) = U(1, 0) = 0 or
U(0, 1) = U(1, 0) = 1.

Notation: U ≡ 〈e, h〉rep.
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RU-implications using uninorms

Definition
Let U be a uninorm. The residual operation derived from U is the binary
operation given by

IU(x , y) = sup{z ∈ [0,1] | U(x , z) ≤ y}

for all x , y ∈ [0,1].

Proposition
Let U be a uninorm and IU its residual operation. Then IU is an implication,
called RU-implication, if and only if

U(x ,0) = 0 for all x < 1.
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Modus Ponens Tollens



Definition (Modus Ponens)
Let I be a fuzzy implication function and T a t-norm. It is said that I satisfies
the Modus Ponens property with respect to T if

T (x , I(x , y)) ≤ y for all x , y ∈ [0,1]. (MP)

Definition (Modus Tollens)
Let I be a fuzzy implication function, T a t-norm and N a fuzzy negation. It is
said that I satisfies the Modus Tollens property with respect to T and N if

T (N(y), I(x , y)) ≤ N(x) for all x , y ∈ [0,1]. (MT)
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the Modus Ponens property with respect to T if

T (x , I(x , y)) ≤ y for all x , y ∈ [0,1]. (MP)

Definition (Modus Tollens)
Let I be a fuzzy implication function, T a t-norm and N a fuzzy negation. It is
said that I satisfies the Modus Tollens property with respect to T and N if

T (N(y), I(x , y)) ≤ N(x) for all x , y ∈ [0,1]. (MT)



These two properties are not equivalent in general

Example (A fuzzy implication that satisfies (MP) but not (MT))
Consider U ≡ 〈h, 3

4 〉rep a representable uninorm with TU = TP, the product
t-norm and SU any strict t-conorm. Let us consider its residual implication IU .
Let us also consider T = TP and the negation N(x) = 1−x

1+10x .

IU safisfies (MP) with respect to T however, IU does not satisfy (MT) with
respect to T and N.



These two properties are not equivalent in general

Example (A fuzzy implication that satisfies (MT) but not (MP))
Let U ≡ 〈h, 1

2 〉rep be a representable uninorm with additive generator

h(x) = ln
(

x
1−x

)
for all x ∈ [0,1]. Let T be a t-norm whose expression is given

by the ordinal sum T ≡ (〈0, 1
2 ,TP〉, 〈 1

2 ,1,T1〉) with T1 any continuous t-norm
and let us consider the continuous fuzzy negation N given by

N(x) =

{
1− x if x ≤ 1

2 ,√
x − x2 otherwise.

IU satisfies (MT) with respect to T and N however IU does not satisfy (MP)
with respect to T .



Modus Ponens Tollens

Definition
Let I be a fuzzy implication function, T a t-norm and N a fuzzy negation. It is
said that I satisfies the Modus Ponens Tollens (MPT) property with respect to
T and N whenever equations (MP) and (MT) are satisfied simultaneously.



A special case that can be considered is when I satisfies the contrapositive
symmetry with respect to N.

Definition
Consider I a fuzzy implication function and N a fuzzy negation. Then I
satisfies the contrapositive symmetry with respect to N if

I(x , y) = I(N(y),N(x)) for all x , y ∈ [0,1]. (CP)

Contrapositive symmetry is a well-known property, which is related to the
Modus Ponens Tollens as it is stated in the well known result:



Theorem
Consider I a fuzzy implication function, T a t-norm and N a strong negation. If
I satisfies the contrapositive symmetry with respect to N, then I satisfies (MP)
with respect to T if and only if I satisfies (MT) with respect to N and T .

Based on this result if a fuzzy implication function I satisfies (CP) with respect
to N, only one of (MP) or (MT) needs to be checked in order to verify that I
satisfies (MPT).



In the case of residual implications derived from idempotent uninorms, let us
recall this result:

Proposition
Consider U ≡ 〈g,e〉ide an idempotent uninorm with g(0) = 1, IU its residual
implication and N a strong negation. Then IU satisfies (CP) with respect to N
if and only if g = N.

As a consequence we have infinite RU-implications that satisfy (MPT) for any
t-norm T ,

Corollary
Let N be a strong negation, U ≡ 〈N,e〉ide an idempotent uninorm, IU its
residual implication, and T a t-norm. Then IU satisfies (MPT) with respect to
T and N.
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Modus Ponens Tollens for implications derived
from different classes of uninorms



Case when U is a uninorm in Umin

A first result,

Proposition
Let U ≡ 〈TU ,e,SU〉min a uninorm in Umin and IU its residual implication. Let T
be a continuous t-norm, and N be a continuous fuzzy negation with fixed point
s ∈]0,1[. Then, it holds that:

If IU satisfies (MPT) with T and N, then T is nilpotent with normalized
additive generator t : [0,1]→ [0,1] and associated negation
NT (x) = t−1(1− t(x)) for all x ∈ [0,1] such that N(y) ≤ NT (y) for all
y ≤ e.

Now, let us consider T satisfying the previous conditions. In this
case,
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Case when U is a uninorm in Umin

In this case, when

(i) If TU = min then IU always satisfies (MPT) with respect to T
and N.

Example
Let us consider the uninorm U ≡ 〈TM,e,SU〉min where TM is the minimum
t-norm and SU any t-conorm. Let TL be the Łukasiewicz t-norm and N = Nc
the classical negation given by Nc(x) = 1− x for all x ∈ [0,1].
Thus, IU satisfies (MPT) with respect to TL and Nc .



Case when U is a uninorm in Umin

In this case, when
(i) If TU = min then IU always satisfies (MPT) with respect to T
and N.

Example
Let us consider the uninorm U ≡ 〈TM,e,SU〉min where TM is the minimum
t-norm and SU any t-conorm. Let TL be the Łukasiewicz t-norm and N = Nc
the classical negation given by Nc(x) = 1− x for all x ∈ [0,1].
Thus, IU satisfies (MPT) with respect to TL and Nc .



Case when U is a uninorm in Umin

In this case, when
(i) If TU = min then IU always satisfies (MPT) with respect to T
and N.

Example
Let us consider the uninorm U ≡ 〈TM,e,SU〉min where TM is the minimum
t-norm and SU any t-conorm. Let TL be the Łukasiewicz t-norm and N = Nc
the classical negation given by Nc(x) = 1− x for all x ∈ [0,1].
Thus, IU satisfies (MPT) with respect to TL and Nc .



Case when U is a uninorm in Umin

In this case, when
(i) If TU = min then IU always satisfies (MPT) with respect to T
and N.

Example
Let us consider the uninorm U ≡ 〈TM,e,SU〉min where TM is the minimum
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Case when U is a uninorm in Umin

In this case, when

(ii) If TU is a strict t-norm with additive generator tU and either
s ≥ e or N(y) = NT (y) for all y ≤ e, then IU satisfies (MPT) with
respect to T and N if and only if the following condition holds:

(?1) Function g : [0, t(0)]→ [t(e),1] given by the formula
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(v) If TU is a nilpotent t-norm with additive generator tU , s < e
and N(y) < NT (y) for some y ≤ e, then IU satisfies (MPT) with
respect to T and N if and only if Properties (?1), (?2) and (?3)
hold.
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Case when U is an Idempotent Uninorm

We know that for an idempotent uninorm U ≡ 〈g,e〉ide with g(0) = 1, as
TU = min, IU satisfies (MP) with respect to any t-norm. Therefore, we can
write the following result.

Proposition
Let U ≡ 〈g,e〉ide be an idempotent uninorm with neutral element e ∈]0,1[ and
such that g(0) = 1, T a t-norm and N a fuzzy negation. Then IU satisfies
(MPT) with respect to T and N if and only if IU satisfies (MT) with respect to T
and N.



Case when U is an Idempotent Uninorm

Now we will distinguish two cases depending on the value of g(1).

Proposition: Case g(1) > 0
Let U ≡ 〈g,e〉ide with g(0) = 1 and g(1) > 0 and IU its residual implication.
Let T be a t-norm and N a continuous fuzzy negation. If IU satisfies the (MPT)
property with respect to T and N, then the following statements are true:

(i) T (N(y), y) = 0 for all y ≤ g(1).
(ii) If T is a continuous t-norm then T must be nilpotent with
normalized additive generator t : [0,1]→ [0,1] and associated
negation NT , which is given by NT (x) = t−1(1− t(x)), such that
N(y) ≤ NT (y) for all y ≤ g(1).
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Theorem (Case g(1) = 0)
Let U ≡ 〈g,e〉ide be an idempotent uninorm with neutral element e ∈]0,1[ and
g(0) = 1, g(1) = 0 and IU its residual implication. Let T be a t-norm and N a
continuous fuzzy negation. Then IU satisfies (MPT) with respect to T and N if
and only if

min(T (N(y), y),T (N(y),g(x))) ≤ N(x) for all y < x .

Example
Let us consider U ≡ 〈Nc ,

1
2 〉ide an idempotent uninorm, T = TL and N = Nc .

We have
min(TL(Nc(y), y),TL(Nc(y),g(x))) = 0

and then IU satisfies (MPT) with respect to TL and Nc .
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Case when U is an Idempotent Uninorm

Proposition(When N is strict)
Let T be a t-norm, N a strict fuzzy negation, and U ≡ 〈g,e〉ide be an
idempotent uninorm with neutral element e ∈]0,1[ with g(0) = 1, g(1) = 0 and
IU its residual implication. Then IU satisfies (MPT) with respect to T and N if
and only if g(x) ≤ N(x) for all x ≥ e.

Example
Let us consider U ≡ 〈g, 1

4 〉ide an idempotent uninorm where

g(x) =

{
1− 3x if x ≤ 1

3 ,

0 otherwise,

T = TP and N = Nc . It is case we have g(x) ≤ N(x) for all x ≥ 1
4 . Thus, IU

satisfies (MPT) with respect to T and N.



Case when U is an Idempotent Uninorm

Proposition(When N is strict)
Let T be a t-norm, N a strict fuzzy negation, and U ≡ 〈g,e〉ide be an
idempotent uninorm with neutral element e ∈]0,1[ with g(0) = 1, g(1) = 0 and
IU its residual implication. Then IU satisfies (MPT) with respect to T and N if
and only if g(x) ≤ N(x) for all x ≥ e.

Example
Let us consider U ≡ 〈g, 1

4 〉ide an idempotent uninorm where

g(x) =

{
1− 3x if x ≤ 1

3 ,

0 otherwise,

T = TP and N = Nc . It is case we have g(x) ≤ N(x) for all x ≥ 1
4 . Thus, IU

satisfies (MPT) with respect to T and N.



Case when U is a Representable Uninorm

For this kind of uninorms we will consider only continuous t-norms which are
not an ordinal sum, namely, the minimum t-norm and continuous
Archimedean t-norms.

Proposition
Let U ≡ 〈h,e〉rep be a representable uninorm with neutral element e ∈]0,1[
and IU its residual implication. Let T be a continuous non-ordinal sum t-norm
and N a continuous fuzzy negation. Then, it holds that:

If IU satisfies (MPT) with T and N, then T is continuous Archimedean
with additive generator t : [0,1]→ [0,+∞], up to a multiplicative constant.

Thus, in this case, the following statements are true:
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Case when U is a Representable Uninorm

Thus, in this case, the following statements are true:

(i) IU satisfies (MPT) with respect to T and N if and only if Property (?1) is
fulfilled and the following property holds:

(•1) For all y ≤ x ,

h−1(h(y)− h(x)) ≤ t−1(t(N(x))− t(N(y))).

(ii) If T is nilpotent and N = NT , IU satisfies (MPT) with respect to T and N if
and only if the following property holds:

(•2) Function φ : [0,1]→ [−∞,+∞] given by φ(x) = h(t−1(x)) for all
x ∈ [0,1] is subadditive.
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Case when U is a Representable Uninorm

Example
Let us consider T = TL and N = Nc . Let U be the representable uninorm
given by

U(x , y) =
{

0 if (x , y) ∈ {(0,0), (1,1)},
xy

xy+(1−x)(1−y) otherwise.

which has e = 1
2 as neutral element and additive generator h(x) = ln( x

1−x ). In
this case, φ(x) = h(t−1(x)) = ln

( 1−x
x

)
which is clearly subadditive. Thus, we

conclude that IU satisfies (MPT) with respect to T and N.
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Conclusions

In this paper we have studied the fulfillment of the so-called Modus
Ponens Tollens property (MPT) by the family of RU-implications.

We have seen that all RU-implications which satisfy the Modus Ponens
property with respect to a t-norm T and the contrapositive symmetry with
respect to a strong negation N are solutions of (MPT).
When N is not strong or the contrapositive symmetry is not satisfied,
other solutions exist within RU-implications derived from uninorms in
Umin, representable uninorms and idempotent uninorms.
For most of these families, necessary and sufficient conditions are
presented and in some cases, it is shown that the fulfillment of the Modus
Tollens property implies the fulfillment of the Modus Ponens property.
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Future Work

We want to complete the results presented in this paper by considering also
continuous ordinal sum t-norms as T and to deepen the study in the particular
case of idempotent uninorms with g(0) = 1 and g(1) > 0.



Thank you very much!
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