

Automatic detection of symmetry in dermoscopic images based on shape and texture

Vincent Toureau Pedro Bibiloni Lidia Talavera-Martínez Manuel González-Hidalgo

16th June, IPMU 2020

Vincent Toureau

Pedro Bibiloni

Lidia Talavera-Martínez

Manuel González-Hidalgo

Skin-lesion Symmetry

Skin-lesion Symmetry

Source: Science Prog

- PH² Dataset
- Jaccard Index
- Random Forests
- Patches Dataset

Mendonça, T. F., et al. "PH2: A public database for the analysis of dermoscopic images." *Dermoscopy image analysis* (2015).

- PH² Dataset
- Jaccard Index
- Random Forests
- Patches Dataset

- PH² Dataset
- Jaccard Index
- Random Forests
- Patches Dataset

Image source: Antanas Verikas et al.

- PH² Dataset
- Jaccard Index
- Random Forests
- Patches Dataset

Symmetry Method: Based on Shape

Shape-Based Method

Symmetry Based on Shape

Shape-Based Method

"Shape" Symmetry

Shape-Based Method

Symmetry Method: Based on Texture

Texture-Based Method

Symmetry Based on Texture

- PH² Dataset
- Jaccard Index
- Random Forests
- Patches Dataset

Similar Pairs

VS

Non-Similar Pairs

Patches Dataset

Similar pairs:

- Close (partially overlapping)
- Both within or without the lesion

Non-similar pairs:

• One within the lesion, one without the lesion

10+10 pairs from each of the 200 samples.

Patches Dataset

Texture-Based Method

Texture-Based Method

Symmetry Method: Overall Symmetry

Overall Symmetry

	"Shape" Symmetry	"Texture" Symmetry
0°		
15°		
30°		
175°		

Random Forest Classifier

PH² dataset:

- Training (50 samples)
- Test (150 samples)

Three classes:

- No symmetry (26%)
- One-axis symmetry (15.5%)
- Two-axes symmetry (58.5%)

Patches dataset might have leaked some bits of information

Classifier	Accuracy
Based on shape	86%
Based on texture	84%
Based on both	88%

Limitations

- Lack of comparison
- Patches dataset:
 - Biased
 - Limited amount of textures
- Study bias: light-skin patients

Contributions and software

- Patches dataset
- Symmetry detection
 - Only-shape and only-texture symmetry.
 - Overall symmetry.

[Python package] dermoscopic-symmetry https://pypi.org/project/dermoscopic-symmetry/

[Online demo] DermaWeb http://dermaweb.uib.es/d/algorithm/dermoscopy_shape_symmetry/ http://dermaweb.uib.es/d/algorithm/dermoscopy_texture_symmetry/

Thank you

